

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION:	BACHELOR OF SC STATISTICS	CIENCE IN	APPLIED MATHEMATICS AND
QUALIFICATION CODE:	07BAMS	LEVEL:	7
COURSE CODE:	TSA701S	COURSE NAME:	TIME SERIES ANALYSIS
SESSION:	JUNE 2023	PAPER:	THEORY
DURATION:	3 HOURS	MARKS	100

1ST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER	Dr. Jacob Ong'ala			
MODERATOR	Prof. Lilian Pazvakawambwa			

INSTRUCTION

- 1. Answer all the questions
- 2. Show clearly all the steps in the calculations
- 3. All written work must be done in blue and black ink

PERMISSIBLE MATERIALS

Non-programmable calculator without cover

THIS QUESTION PAPER CONSISTS OF 3 PAGERS (including the front page)

QUESTION ONE - 20 MARKS

The data in the table below shows the exchange rate between the Japanese yen and the US dollar from 1984-Q1 through 1994-Q4. Use the data shown in the table below to answer the questions that follow.

Period	Actual	Period	Actual	
Mar-88 Jun-88 Sep-88 Dec-88 Mar-89 Jun-89 Sep-89 Dec-89 Mar-90 Jun-90 Sep-90	124.5 132.2 134.3 125.9 132.55 143.95 139.35 143.4 157.65 152.85 137.95	Mar-91 Jun-91 Sep-91 Dec-91 Mar-92 Jun-92 Sep-92 Dec-92 Mar-93 Jun-93 Sep-93	140.55 138.15 132.95 125.25 133.05 125.55 119.25 124.65 115.35 106.51	
Dec-90	135.4	Dec-93	111.89	

- (a) Plot the data [2 mks]
- (b) Estimate a triple exponential smoothing model with a smoothing parameter $\alpha = 0.6$., $\beta = 0.8$. and $\gamma = 0.1$. [14 mks]
- (c) Plot the smoothing model on the same graph in (a) above [1 mks]
- (d) Compute the mean square error for the model in (b) above [3 mks]

QUESTION TWO - 20 MARKS

A first order moving average MA(2) is defined by $X_t = z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2}$ Where $z_t \sim WN(0, \sigma^2)$ and the $z_t : t = 1, 2, 3..., T$ are uncorrelated.

- (a) Find
 - (i) Mean of the MA(2) [2 mks] (ii) Variance of the MA(2) [6 mks]
 - (iii) Autocovariance of the MA(2) [8 mks]
 - (iv) Autocorrelation of the MA(2) [2 mks]
- (b) is the MA(2) stationary? Explain your answer [2 mks]

QUESTION THREE - 22 MARKS

Consider AR(3): $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-2} + \varepsilon_t$ where ε_t is identically independently distributed (iid) as white noise. The Estimates the parameters can be found using Yule Walker equations as

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix} \text{ and }$$

$$\sigma_{\varepsilon}^2 = \gamma_o [(1 - \phi_1^2 - \phi_2^2 - \phi_3^2) - 2\phi_2(\phi_1 + \phi_3)\rho_1 - 2\phi_1\phi_3\rho_2]$$
where

$$\hat{\rho_h} = r_h = \frac{\sum_{t=1}^{n} (X_t - \mu)(X_{t-h} - \mu)}{\sum_{t=1}^{n} (X_t - \mu)^2}$$

$$\hat{\gamma_o} = Var = \frac{1}{n} \sum_{t=1}^{n} (X_t - \mu)^2$$

$$\mu = \sum_{t=1}^{n} X_t$$

Use the data below to evaluate the values of the estimates $(\phi_1, \phi_2, \phi_3 \text{ and } \sigma_{\varepsilon}^2)$ [22 mks]

		2								
X_t	24	26	26	34	35	38	39	33	37	38

QUESTION FOUR - 18 MARKS

Consider the ARMA(1,2) process X_t satisfying the equations $X_t - 0.6X_{t-1} = z_t - 0.4z_{t-1}$ $0.2z_{t-2}$ Where $z_t \sim WN(0, \sigma^2)$ and the $z_t : t = 1, 2, 3..., T$ are uncorrelated.

(a) Determine if X_t is stationary

[4 mks]

(b) Determine if X_t is casual

[2 mks]

(c) Determine if X_t is invertible

[2 mks]

(d) Write the coefficients Ψ_j of the $MA(\infty)$ representation of X_t

[10 mks]

QUESTION FIVE - 20 MARKS

(a) State the order of the following ARIMA(p,d,q) processes

[12 mks]

(i)
$$Y_t = 0.8Y_{t-1} + e_t + 0.7e_{t-1} + 0.6e_{t-2}$$

(ii)
$$Y_t = Y_{t-1} + e_t - \theta e_{t-1}$$

(iii)
$$Y_t = (1 + \phi)Y_{t-1} - \phi Y_{t-2} + e_t$$

(iv)
$$Y_t = 5 + e_t - \frac{1}{2}e_{t-1} - \frac{1}{4}e_{t-2}$$

(b) Verify that (max $\rho_1 = 0.5$ nd min $\rho_1 = 0.5$ for $-\infty < \theta < \infty$) for an MA(1) process: $X_t = \varepsilon_t - \theta \varepsilon_{t-1}$ such that ε_t are independent noise processes. [8 mks]